欧美一区二区视频,一二三四视频社区5在线高清,日本一卡2卡三卡4卡免费观,任你爽任你鲁在线精品视频

芬蘭Kibron專注表面張力儀測量技術(shù),快速精準(zhǔn)測量動靜態(tài)表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟(jì)大學(xué)

同濟(jì)大學(xué)

聯(lián)合大學(xué).jpg

聯(lián)合大學(xué)

寶潔公司

美國保潔

強(qiáng)生=

美國強(qiáng)生

瑞士羅氏

瑞士羅氏

當(dāng)前位置首頁 > 新聞中心

表面張力儀應(yīng)用案例:芳綸纖維復(fù)合材料浸潤性測量原理與步驟

來源:中國電力科學(xué)研究院有限公司 國網(wǎng)福建省電力有限公司電力科學(xué)研究院 瀏覽 207 次 發(fā)布時間:2024-07-15

芳綸復(fù)合材料被譽為全球材料皇冠上的鉆石,位列三大高性能材料之一。其產(chǎn)業(yè)化進(jìn)程對我國國防建設(shè)、主導(dǎo)型工業(yè)項目(如大型飛機(jī)、高速列車、造船、電力、電子信息、建材等)具有至關(guān)重要的影響。在軍工領(lǐng)域、芳綸復(fù)合材料大量應(yīng)用于飛機(jī)、艦船、潛艇、坦克、導(dǎo)彈、雷達(dá)的高性能結(jié)構(gòu)件和特種電子設(shè)備。在民用領(lǐng)域,主要用于航天、航空、高速列車及汽車的高性能結(jié)構(gòu)件、軌道交通、核電、水電和電網(wǎng)工程中大型電機(jī)、變壓器高端絕緣材料,建筑用高性能隔熱阻燃材料,高端電路板和印刷、醫(yī)用材料等。


由于芳綸纖維表面官能團(tuán)少,與基體粘合差,因此在制備芳綸增強(qiáng)型復(fù)合材料時一般需要對芳綸纖維進(jìn)行表面處理,來增加芳綸纖維界面極性,改善芳綸纖維濕潤性。在材料設(shè)計和性能評估中,首先應(yīng)對樹脂與纖維間浸潤性進(jìn)行評價,進(jìn)而提高樹脂與纖維的相容性。


芳綸纖維增強(qiáng)型復(fù)合材料的浸潤性一般通過芳綸纖維的表面接觸角來表征。目前常用的測量芳綸纖維接觸角的方法為動態(tài)接觸角測量法。但這種方法要求在測試中,纖維與液面始終保持90°角,垂直地刺破液面。因此僅適用于玻璃纖維、碳纖維等剛性纖維。而芳綸纖維質(zhì)地較軟,較難刺破液體表面,很難與液面保持垂直,致使測量誤差較大,結(jié)果并不準(zhǔn)確。


另一種纖維接觸角的測量法是用視頻光學(xué)接觸角測量儀直接觀察液滴包裹纖維或停留在纖維表面的圖像,在圖像中讀取靜態(tài)接觸角。但這種方法需要將皮升級的液滴噴射在直徑為微米級的纖維表面,設(shè)備成本高,操作難度較大。且由于液滴的重力作用和纖維的吸濕性,液滴難以在纖維上保持固定形態(tài),測量結(jié)果有一定誤差。


測量原理


在垂直條件下,液體在毛細(xì)管中上升的驅(qū)動力為液體表面張力引起的附加壓力,此外還收到黏滯阻力和液柱重力的影響,阻止液體滲透。Washburn方程在推導(dǎo)過程中,根據(jù)Poiseuille公式處理了黏度影響以后,得到如下關(guān)系式:

式中:l為液體在毛細(xì)管中移動的距離;r為毛細(xì)管半徑;t為移動時間;∑p為液體移動的驅(qū)動壓力及附加壓力與重力之差;η為液體的黏度;ε為滑動摩擦系數(shù)。


由于芳綸纖維直徑只有幾十微米,毛細(xì)管半徑r很小,毛細(xì)附加壓力遠(yuǎn)大于液柱的重力,所以可以忽略重力的作用,液體流動,認(rèn)為摩擦系數(shù)ε=0。代入附加壓力的Young-Laplace方程并積分,得到Washburn方程式:

式中:h為液體上升高度;C為常數(shù);r為毛細(xì)管半徑;σ為液體表面張力;η為液體的黏度;θ為固體對液體的表面接觸角;t為移動時間。


當(dāng)芳綸纖維均勻地填入樣品柱,取向相同,全部近似平行于測試管管壁時,得到一個可以看作由一束平行毛細(xì)管組成的樣品柱,與Washburn動態(tài)壓力法中假設(shè)的前提條件相同,因此Washburn動態(tài)壓力法適用于這種裝填條件下芳綸纖維接觸角的測量。


從而能夠有效地測試芳綸纖維接觸角,并給出了技術(shù)原理。試驗操作簡單、重復(fù)性好、測量效果較佳。本方法能夠極大地提高對芳綸纖維增強(qiáng)型復(fù)合材料浸潤性的評價能力。解決了現(xiàn)有技術(shù)中試驗操作困難、重復(fù)性差、測量誤差大的問題。


可選地,獲取兩組質(zhì)量相同,高度及堆積密度相同的芳綸短絲樣品柱之前,包括:


將芳綸纖維測試樣品統(tǒng)一裁剪成約為測試管長度2/3的芳綸短絲樣品;


將所述芳綸短絲樣品、所述測試管及加工好的封口材料置于烘箱中,在105℃~110℃干燥2h后置于干燥器中冷卻保存。


可選地,獲取兩組質(zhì)量相同,高度及堆積密度相同的芳綸短絲樣品柱,包括:


將兩組預(yù)定重量的芳綸短絲樣品密實地裝入下端用濾紙封閉的測試管內(nèi),使所述芳綸短絲樣品取向相同,且平行于所述測試管管壁,敲擊管壁,振蕩預(yù)定時間,使芳綸短絲樣品壓實,記錄高度位置,稱重,計算堆積密度。


從而能夠有效地測試芳綸纖維接觸角,并給出了技術(shù)原理。試驗操作簡單、重復(fù)性好、測量效果較佳。本方法能夠極大地提高對芳綸纖維增強(qiáng)型復(fù)合材料浸潤性的評價能力。解決了現(xiàn)有技術(shù)中試驗操作困難、重復(fù)性差、測量誤差大的問題。


測量步驟


步驟一:將芳綸纖維測試樣品統(tǒng)一裁剪成約為樣品管長度2/3的短絲。


步驟二:將測試樣品、樣品管及加工好的封口材料置于烘箱中,在105℃~110℃干燥2h后置于干燥器中冷卻保存。


步驟三:將1~2g測試樣品密實地裝入下端用濾紙封閉的測試管內(nèi),盡量使所有芳綸短絲取向相同,且平行于測試管管壁。敲擊管壁,振蕩3min,使樣品盡量壓實,記錄高度位置,稱重,計算堆積密度。


步驟四:稱取相同質(zhì)量的芳綸短絲樣品,用同樣的方法填充一組高度及堆積密度相同的樣品柱。


步驟五:采用正己烷作為完全潤濕體,將裝有一組樣品柱的測量管垂直掛在表面張力儀的天平掛鉤上,使下端與正己烷液面距離約2mm,設(shè)定吸附時間200s,運行表面張力儀的washburn程序,進(jìn)行不少于三次的平行樣重復(fù)測量,計算樣品柱的參數(shù)β值。


步驟六:將表面張力儀中的液體更換為待測液體,將另一組樣品柱的測量管垂直掛在表面張力儀的天平掛鉤上,使下端與待測液面距離約2mm,設(shè)定吸附時間200s,運行表面張力儀的washburn程序,進(jìn)行不少于三次的平行樣重復(fù)測量,根據(jù)已測得的參數(shù)β值,計算芳綸纖維與待測液體的接觸角θ。


實施效果


取兩組樣品做對照試驗。其中對照組樣品為Kevlar 49芳綸纖維,試驗組樣品為經(jīng)過等離子體表面處理后的同型號Kevlar纖維。等離子體放電方法為常壓空氣等離子體DBD放電,等離子體功率為0.7kW,處理時間為24s。


測量方法為上述的步驟一至步驟六。測試儀器為Sigma 701表面張力儀。完全潤濕體為正己烷,待測液體為水。


測量結(jié)果如下表所示,測量結(jié)果為三次平行樣的平均值??梢娊?jīng)等離子體表面處理后,芳綸纖維與水的表面接觸角降低16°,潤濕性提高。